Module polarcodes.utils

Math provides miscellaneous math operations to the other classes, which are important for polar codes algorithm implementations.

Expand source code
#!/usr/bin/env python

"""
Math provides miscellaneous math operations to the other classes, which are important for polar codes
algorithm implementations.
"""

import numpy as np

def bit_reversed(x, n):
    """
    Bit-reversal operation.

    Parameters
    ----------
    x: ndarray<int>, int
        a vector of indices
    n: int
        number of bits per index in ``x``

    Returns
    ----------
    ndarray<int>, int
        bit-reversed version of x

    """

    result = 0
    for i in range(n):  # for each bit number
        if (x & (1 << i)):  # if it matches that bit
            result |= (1 << (n - 1 - i))  # set the "opposite" bit in result
    return result

def logdomain_diff(x, y):
    """
    Find the difference between x and y in log-domain. It uses log1p to improve numerical stability.

    Parameters
    ----------
    x: float
        any number in the log-domain
    y: float
        any number in the log-domain

    Returns
    ----------
    float
        the result of x - y

    """

    if x > y:
        z = x + np.log1p(-np.exp(y - x))
    else:
        z = y + np.log1p(-np.exp(x - y))
    return z

def logdomain_sum(x, y):
    """
    Find the addition of x and y in log-domain. It uses log1p to improve numerical stability.

    Parameters
    ----------
    x: float
        any number in the log-domain
    y: float
        any number in the log-domain

    Returns
    ----------
    float
        the result of x + y

    """

    if x > y:
        z = x + np.log1p(np.exp(y - x))
    else:
        z = y + np.log1p(np.exp(x - y))
    return z

def bit_perm(x, p, n):
    """
    Find the permutation of an index.

    Parameters
    ----------
    x: ndarray<int>, int
        a vector of indices
    p: ndarray<int>
        permutation vector, ex: bit-reversal is (0,1,...,n-1)
    n: int
        number of bits per index in ``x``

    Returns
    ----------
    ndarray<int>, int
        permuted indices

    """

    result = 0
    for i in range(n):
        b = (x >> p[i]) & 1
        result ^= (-b ^ result) & (1 << (n - i - 1))
    return result

# find hamming weight of an index x
def hamming_wt(x, n):
    """
    Find the bit-wise hamming weight of an index.

    Parameters
    ----------
    x: int
        an index
    n: int
        number of bits in ``x``

    Returns
    ----------
    int
        bit-wise hamming weight of ``x``

    """

    m = 1
    wt = 0
    for i in range(n):
        b = (x >> i) & m
        if b:
            wt = wt + 1
    return wt

# sort by hamming_wt()
def sort_by_wt(x, n):
    """
    Sort a vector by index hamming weights using hamming_wt().

    Parameters
    ----------
    x: ndarray<int>
        a vector of indices
    n: int
        number of bits per index in ``x``

    Returns
    ----------
    ndarray<int>
        sorted vector

    """

    wts = np.zeros(len(x), dtype=int)
    for i in range(len(x)):
        wts[i] = hamming_wt(x[i], n)
    mask = np.argsort(wts)
    return x[mask]

def inverse_set(F, N):
    """
    Find {0,1,...,N-1}\F. This is useful for finding the information set given a frozen set as ``F``.

    Parameters
    ----------
    F: ndarray<int>
        a vector of indices
    N: int
        block length

    Returns
    ----------
    ndarray<int>
        inverted set as a vector

    """

    n = int(np.log2(N))
    not_F = []
    for i in range(N):
        if i not in F:
            not_F.append(i)
    return np.array(not_F)

def subtract_set(X, Y):
    """
    Subtraction of two sets.

    Parameters
    ----------
    X: ndarray<int>
        a vector of indices
    Y: ndarray<int>
        a vector of indices

    Returns
    ----------
    ndarray<int>
        result of subtracted set as a vector

    """

    X_new = []
    for x in X:
        if x not in Y:
            X_new.append(x)
    return np.array(X_new)

def arikan_gen(n):
    """
    The n-th kronecker product of [[1, 1], [0, 1]], commonly referred to as Arikan's kernel.

    Parameters
    ----------
    n: int
        log2(N), where N is the block length

    Returns
    ----------
    ndarray<int>
        polar code generator matrix

    """

    F = np.array([[1, 1], [0, 1]])
    F_n = F
    for i in range(n - 1):
        F_n = np.kron(F, F_n)
    return F_n

# Gaussian Approximation helper functions:

def phi_residual(x, val):
    return phi(x) - val

def phi(x):
    if x < 10:
        y = -0.4527 * (x ** 0.86) + 0.0218
        y = np.exp(y)
    else:
        y = np.sqrt(3.14159 / x) * (1 - 10 / (7 * x)) * np.exp(-x / 4)
    return y

def phi_inv(y):
    return bisection(y, 0, 10000)

def bisection(val, a, b):
    c = a
    while (b - a) >= 0.01:
        # check if middle point is root
        c = (a + b) / 2
        if (phi_residual(c, val) == 0.0):
            break

        # choose which side to repeat the steps
        if (phi_residual(c, val) * phi_residual(a, val) < 0):
            b = c
        else:
            a = c
    return c

def logQ_Borjesson(x):
    a = 0.339
    b = 5.510
    half_log2pi = 0.5 * np.log(2 * np.pi)
    if x < 0:
        x = -x
        y = -np.log((1 - a) * x + a * np.sqrt(b + x * x)) - (x * x / 2) - half_log2pi
        y = np.log(1 - np.exp(y))
    else:
        y = -np.log((1 - a) * x + a * np.sqrt(b + x * x)) - (x * x / 2) - half_log2pi
    return y

Functions

def arikan_gen(n)

The n-th kronecker product of [[1, 1], [0, 1]], commonly referred to as Arikan's kernel.

Parameters

n : int
log2(N), where N is the block length

Returns

ndarray<int>
polar code generator matrix
Expand source code
def arikan_gen(n):
    """
    The n-th kronecker product of [[1, 1], [0, 1]], commonly referred to as Arikan's kernel.

    Parameters
    ----------
    n: int
        log2(N), where N is the block length

    Returns
    ----------
    ndarray<int>
        polar code generator matrix

    """

    F = np.array([[1, 1], [0, 1]])
    F_n = F
    for i in range(n - 1):
        F_n = np.kron(F, F_n)
    return F_n
def bisection(val, a, b)
Expand source code
def bisection(val, a, b):
    c = a
    while (b - a) >= 0.01:
        # check if middle point is root
        c = (a + b) / 2
        if (phi_residual(c, val) == 0.0):
            break

        # choose which side to repeat the steps
        if (phi_residual(c, val) * phi_residual(a, val) < 0):
            b = c
        else:
            a = c
    return c
def bit_perm(x, p, n)

Find the permutation of an index.

Parameters

x : ndarray<int>, int
a vector of indices
p : ndarray<int>
permutation vector, ex: bit-reversal is (0,1,…,n-1)
n : int
number of bits per index in x

Returns

ndarray<int>, int
permuted indices
Expand source code
def bit_perm(x, p, n):
    """
    Find the permutation of an index.

    Parameters
    ----------
    x: ndarray<int>, int
        a vector of indices
    p: ndarray<int>
        permutation vector, ex: bit-reversal is (0,1,...,n-1)
    n: int
        number of bits per index in ``x``

    Returns
    ----------
    ndarray<int>, int
        permuted indices

    """

    result = 0
    for i in range(n):
        b = (x >> p[i]) & 1
        result ^= (-b ^ result) & (1 << (n - i - 1))
    return result
def bit_reversed(x, n)

Bit-reversal operation.

Parameters

x : ndarray<int>, int
a vector of indices
n : int
number of bits per index in x

Returns

ndarray<int>, int
bit-reversed version of x
Expand source code
def bit_reversed(x, n):
    """
    Bit-reversal operation.

    Parameters
    ----------
    x: ndarray<int>, int
        a vector of indices
    n: int
        number of bits per index in ``x``

    Returns
    ----------
    ndarray<int>, int
        bit-reversed version of x

    """

    result = 0
    for i in range(n):  # for each bit number
        if (x & (1 << i)):  # if it matches that bit
            result |= (1 << (n - 1 - i))  # set the "opposite" bit in result
    return result
def hamming_wt(x, n)

Find the bit-wise hamming weight of an index.

Parameters

x : int
an index
n : int
number of bits in x

Returns

int
bit-wise hamming weight of x
Expand source code
def hamming_wt(x, n):
    """
    Find the bit-wise hamming weight of an index.

    Parameters
    ----------
    x: int
        an index
    n: int
        number of bits in ``x``

    Returns
    ----------
    int
        bit-wise hamming weight of ``x``

    """

    m = 1
    wt = 0
    for i in range(n):
        b = (x >> i) & m
        if b:
            wt = wt + 1
    return wt
def inverse_set(F, N)

Find {0,1,…,N-1}\F. This is useful for finding the information set given a frozen set as F.

Parameters

F : ndarray<int>
a vector of indices
N : int
block length

Returns

ndarray<int>
inverted set as a vector
Expand source code
def inverse_set(F, N):
    """
    Find {0,1,...,N-1}\F. This is useful for finding the information set given a frozen set as ``F``.

    Parameters
    ----------
    F: ndarray<int>
        a vector of indices
    N: int
        block length

    Returns
    ----------
    ndarray<int>
        inverted set as a vector

    """

    n = int(np.log2(N))
    not_F = []
    for i in range(N):
        if i not in F:
            not_F.append(i)
    return np.array(not_F)
def logQ_Borjesson(x)
Expand source code
def logQ_Borjesson(x):
    a = 0.339
    b = 5.510
    half_log2pi = 0.5 * np.log(2 * np.pi)
    if x < 0:
        x = -x
        y = -np.log((1 - a) * x + a * np.sqrt(b + x * x)) - (x * x / 2) - half_log2pi
        y = np.log(1 - np.exp(y))
    else:
        y = -np.log((1 - a) * x + a * np.sqrt(b + x * x)) - (x * x / 2) - half_log2pi
    return y
def logdomain_diff(x, y)

Find the difference between x and y in log-domain. It uses log1p to improve numerical stability.

Parameters

x : float
any number in the log-domain
y : float
any number in the log-domain

Returns

float
the result of x - y
Expand source code
def logdomain_diff(x, y):
    """
    Find the difference between x and y in log-domain. It uses log1p to improve numerical stability.

    Parameters
    ----------
    x: float
        any number in the log-domain
    y: float
        any number in the log-domain

    Returns
    ----------
    float
        the result of x - y

    """

    if x > y:
        z = x + np.log1p(-np.exp(y - x))
    else:
        z = y + np.log1p(-np.exp(x - y))
    return z
def logdomain_sum(x, y)

Find the addition of x and y in log-domain. It uses log1p to improve numerical stability.

Parameters

x : float
any number in the log-domain
y : float
any number in the log-domain

Returns

float
the result of x + y
Expand source code
def logdomain_sum(x, y):
    """
    Find the addition of x and y in log-domain. It uses log1p to improve numerical stability.

    Parameters
    ----------
    x: float
        any number in the log-domain
    y: float
        any number in the log-domain

    Returns
    ----------
    float
        the result of x + y

    """

    if x > y:
        z = x + np.log1p(np.exp(y - x))
    else:
        z = y + np.log1p(np.exp(x - y))
    return z
def phi(x)
Expand source code
def phi(x):
    if x < 10:
        y = -0.4527 * (x ** 0.86) + 0.0218
        y = np.exp(y)
    else:
        y = np.sqrt(3.14159 / x) * (1 - 10 / (7 * x)) * np.exp(-x / 4)
    return y
def phi_inv(y)
Expand source code
def phi_inv(y):
    return bisection(y, 0, 10000)
def phi_residual(x, val)
Expand source code
def phi_residual(x, val):
    return phi(x) - val
def sort_by_wt(x, n)

Sort a vector by index hamming weights using hamming_wt().

Parameters

x : ndarray<int>
a vector of indices
n : int
number of bits per index in x

Returns

ndarray<int>
sorted vector
Expand source code
def sort_by_wt(x, n):
    """
    Sort a vector by index hamming weights using hamming_wt().

    Parameters
    ----------
    x: ndarray<int>
        a vector of indices
    n: int
        number of bits per index in ``x``

    Returns
    ----------
    ndarray<int>
        sorted vector

    """

    wts = np.zeros(len(x), dtype=int)
    for i in range(len(x)):
        wts[i] = hamming_wt(x[i], n)
    mask = np.argsort(wts)
    return x[mask]
def subtract_set(X, Y)

Subtraction of two sets.

Parameters

X : ndarray<int>
a vector of indices
Y : ndarray<int>
a vector of indices

Returns

ndarray<int>
result of subtracted set as a vector
Expand source code
def subtract_set(X, Y):
    """
    Subtraction of two sets.

    Parameters
    ----------
    X: ndarray<int>
        a vector of indices
    Y: ndarray<int>
        a vector of indices

    Returns
    ----------
    ndarray<int>
        result of subtracted set as a vector

    """

    X_new = []
    for x in X:
        if x not in Y:
            X_new.append(x)
    return np.array(X_new)